20200611
참고자료
"https://zzsza.github.io/data/2018/01/23/opencv-1/" OpenCV함수 설명
"https://github.com/VivekKrG/Image-field-detection-using-template-matching-using-openCV"
"https://sungwookkang.com/m/1404" 성별 나이 맞추기
01 Image Field Detection
library설치 ; imutils
attached file
gad.zip
code
# -*- coding: utf-8 -*-
"""
Created on Thu Jun 11 22:28:42 2020
@author: KDB
"""
# importing libraries
import numpy as np
import imutils
import cv2
field_threshold = { "prev_policy_no" : 0.7,
"address" : 0.6,
}
# Function to Generate bounding
# boxes around detected fields
def getBoxed(img, img_gray, template, field_name = "policy_no"):
w, h = template.shape[::-1]
# Apply template matching
res = cv2.matchTemplate(img_gray, template,
cv2.TM_CCOEFF_NORMED)
hits = np.where(res >= field_threshold[field_name])
# Draw a rectangle around the matched region.
for pt in zip(*hits[::-1]):
cv2.rectangle(img, pt, (pt[0] + w, pt[1] + h),
(0, 255, 255), 2)
y = pt[1] - 10 if pt[1] - 10 > 10 else pt[1] + h + 20
cv2.putText(img, field_name, (pt[0], y),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 1)
return img
# Driver Function
if __name__ == '__main__':
# Read the original document image
img = cv2.imread('doc.png')
# 3-d to 2-d conversion
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Field templates
template_add = cv2.imread('doc_address.png', 0)
template_prev = cv2.imread('doc_prev_policy.png', 0)
img = getBoxed(img.copy(), img_gray.copy(),
template_add, 'address')
img = getBoxed(img.copy(), img_gray.copy(),
template_prev, 'prev_policy_no')
cv2.imshow('Detected', img)
cv2.waitKey(0)
02 성별 나이 맞추기
gad.py
(base)pip install opencv-python
import cv2
import math
import argparse
def highlightFace(net, frame, conf_threshold=0.7):
frameOpencvDnn=frame.copy()
frameHeight=frameOpencvDnn.shape[0]
frameWidth=frameOpencvDnn.shape[1]
blob=cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)
net.setInput(blob)
detections=net.forward()
faceBoxes=[]
for i in range(detections.shape[2]):
confidence=detections[0,0,i,2]
if confidence>conf_threshold:
x1=int(detections[0,0,i,3]*frameWidth)
y1=int(detections[0,0,i,4]*frameHeight)
x2=int(detections[0,0,i,5]*frameWidth)
y2=int(detections[0,0,i,6]*frameHeight)
faceBoxes.append([x1,y1,x2,y2])
cv2.rectangle(frameOpencvDnn, (x1,y1), (x2,y2), (0,255,0), int(round(frameHeight/150)), 8)
return frameOpencvDnn,faceBoxes
parser=argparse.ArgumentParser()
parser.add_argument('--image')
args=parser.parse_args()
faceProto="opencv_face_detector.pbtxt"
faceModel="opencv_face_detector_uint8.pb"
ageProto="age_deploy.prototxt"
ageModel="age_net.caffemodel"
genderProto="gender_deploy.prototxt"
genderModel="gender_net.caffemodel"
MODEL_MEAN_VALUES=(78.4263377603, 87.7689143744, 114.895847746)
ageList=['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList=['Male','Female']
faceNet=cv2.dnn.readNet(faceModel,faceProto)
ageNet=cv2.dnn.readNet(ageModel,ageProto)
genderNet=cv2.dnn.readNet(genderModel,genderProto)
video=cv2.VideoCapture(args.image if args.image else 0)
padding=20
while cv2.waitKey(1)<0:
hasFrame,frame=video.read()
if not hasFrame:
cv2.waitKey()
break
resultImg,faceBoxes=highlightFace(faceNet,frame)
if not faceBoxes:
print("No face detected")
for faceBox in faceBoxes:
face=frame[max(0,faceBox[1]-padding):
min(faceBox[3]+padding,frame.shape[0]-1),max(0,faceBox[0]-padding)
:min(faceBox[2]+padding, frame.shape[1]-1)]
blob=cv2.dnn.blobFromImage(face, 1.0, (227,227), MODEL_MEAN_VALUES, swapRB=False)
genderNet.setInput(blob)
genderPreds=genderNet.forward()
gender=genderList[genderPreds[0].argmax()]
print(f'Gender: {gender}')
ageNet.setInput(blob)
agePreds=ageNet.forward()
age=ageList[agePreds[0].argmax()]
print(f'Age: {age[1:-1]} years')
cv2.putText(resultImg, f'{gender}, {age}', (faceBox[0], faceBox[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,255), 2, cv2.LINE_AA)
cv2.imshow("Detecting age and gender", resultImg)